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Abstract
An exactly solvable model for the particle transport between two reservoirs
of non-interacting Bose particles through a microscopic tunnelling junction is
studied. The analysis covers the whole range of temperatures and densities
of the reservoirs, and the particle and energy flows between the reservoirs are
calculated in closed form. In particular, in the case, when Bose–Einstein
condensation is present, their dependence on the phase difference of the
condensates is established.

PACS numbers: 05.30.Jp, 05.60.Gg, 03.75.Kk

1. Introduction

A very simple, exactly soluble, model describing a tunnelling junction of two Bose reservoirs
in different equilibrium states is considered. We show the existence, and construct, the non-
equilibrium stationary state attained at large time starting from the constrained equilibrium
state of the uncoupled reservoirs, when allowing tunnelling through a microscopic channel.
Thereby, we are interested in the case, not considered before, when the reservoirs are allowed
to be in Bose-condensed phases. The most widely known example of physical phenomenon
of the transport between reservoirs in condensed phases is provided by the Josephson current
between two superconductors. The tunnelling of bosons in the model we study, while far from
being a microscopic model for a Josephson junction, can be viewed as a caricature of the pair
tunnelling between two BCS states.

We consider two lattice-free Bose gases on Z
3 with a tunnelling junction through the

x = 0 sites. More precisely, the Hamiltonian in the symmetric Fock space F = F(H) is taken
as

Hλ = −1

2

∑
x,y∈Z

3

tx,y(a
∗
xay + b∗

xby) + λ(a∗
0b0 + b∗

0a0), (1.1)
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where tx,y = δ|x−y|,1 − 6δx,y , and a
�
x, b

�
x are the creation–annihilation operators for bosons

in the first and second reservoir, respectively. Here, H = l2(Z3)
⊕

l2(Z3) is the space
of one-boson states. For our purpose, the coefficients can be taken arbitrary such that
tx,y = t (x − y) � 0, if x �= y, tx,y = 0, if |x − y| > R, and

∑
y tx,y = 0; our special

choice corresponds to a discrete approximation of the usual kinetic energy, i.e., − 1
2�.

Actually, we need the evolution of the two infinitely extended reservoirs, prepared initially
in two different equilibrium states at given temperatures and densities, after switching on the
tunnelling coupling. The Fock space Hamiltonian (1.1) is, however, not adequate for such
a setting. In order to describe the dynamics of the infinite system, we use the algebraic
formulation of quantum statistical mechanics [1, 2]: we choose an appropriate algebra of local
observables and view (1.1) as generating the time evolution automorphism on it. Such an
approach to studying non-equilibrium stationary states has been extensively used in the last
years, mostly for reservoirs of independent Fermions (see [2] and references therein).

Already considering Bose, instead of Fermi, statistics is a non-trivial technical task, even
when no condensation is present [3]. Condensation implies non-uniqueness of the equilibrium
state of the reservoir and hence requires a refined setting. In a recent paper, the simpler problem
of the return to equilibrium of a reservoir of non-interacting Bose particles with condensate
interacting with a finite quantum system has been studied [4]. When the finite quantum system
is replaced by another reservoir, a new features are expected due to the fact that an arbitrarily
large number of particles are involved in the interaction; in particular, instead of an equilibrium
state (which, in fact, no longer exists [5]), the system reaches a stationary state of the coupled
system in which non-zero flows of particles and energy are present.

The choice of a coupling bilinear in a
�
x, b

�
x between reservoirs, while physically

reasonable, is the essential simplifying feature of our model. Under the bilinearity assumption,
the Hamiltonian (1.1) is the second quantization of its restriction to the one-particle subspace
H ⊂ F(H), i.e., of a one-particle Hamiltonian hλ. The evolution of local observables which
are linear combinations of creation/annihilation operator,

∑
x ξxa

�
x + ηxb

�
x , is given by evolving

the vector (ξ, η) ∈ H according to hλ. Under these condition, not only the initial state, which is
taken as a product of equilibrium states of the two (uncoupled) gases, but also the time-evolved
state is quasi-free states. The existence of the t → ∞ limiting state and its explicit form as
a quasi-free state is thus reduced to finding the Möller operators of the pair (h0, hλ) of one-
particle Hamiltonians. Thereby, the particle and energy currents between the two reservoirs
in the stationary state, in particular the contribution of the condensate, is obtained in closed
form. The other simplifying assumptions of the model can be relaxed and the same kind of
results obtained under somewhat more general conditions (e.g. for several reservoirs modelled
as continuous or lattice Bose gases with different dispersion laws or tunnelling through an
arbitrary finite number of sites, etc) at the price of more complicated formulae.

The results we obtain for this oversimplified model may, however, give a hint on what is to
be expected regarding the contribution of the condensate in more general cases (e.g. polynomial
coupling of higher degree in the creation–annihilation operators between the reservoirs).

2. The dynamics on the algebra of the canonical commutation relations

It will be convenient to identify the one-particle Hilbert space H = l2(Z3)
⊕

l2(Z3) with the
space l2(Z3, C

2) of square summable sequences

f =
{(

ξx

ηx

)
; x ∈ Z

3

}
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of two-dimensional vectors, where x labels the lattice sites and the upper (lower) component
refers to the first (second) reservoir. Let π0 : H → C

2 be the restriction of f to the x = 0 site,

π0f =
(

ξ0

η0

)
.

With this identification, the one-particle Hamiltonian writes

hλ = h0 + λv

= − 1
2�I + λπ∗

0 σ1π0, (2.1)

where � denotes the lattice Laplace operator, I is the unit operator in C
2 and

σ1 =
(

0 1
1 0

)

is the first Pauli matrix.
The kinematical C∗-algebra of the model is the canonical commutation relation algebra

W(D) over the invariant subspace of hλ,D = l1(Z3, C
2) ⊂ H (the reason for this choice of

D will become clear in section 3). W(D) is generated by the Weyl operators {W(f ); f ∈ D},
satisfying

W(f )W(g) = e− i
2 Im(f,g)W(f + g). (2.2)

The time evolution for the coupled reservoirs is the group of Bogoliubov automorphisms
on W(D) defined by its action on W(f ):

τλ
t (W(f )) = W(eihλtf ). (2.3)

In view of the canonical commutation relations (2.2), equation (2.3) is sufficient to uniquely
define the action of τλ

t on all elements of W(D). Likewise, the evolution of the uncoupled
reservoirs is τ 0

t given by equation (2.3) with λ = 0.
Suppose that, at time t = 0, when the coupling between reservoirs is switched on, the

system was in an (constrained) equilibrium state of the uncoupled reservoirs, ω0 on W(D).
In particular, ω0 is invariant with respect to the free evolution τ 0

t (i.e. for any A ∈ W(D), the
expectation ω0(τ

0
t (A)) is independent of t). The expectations of the observables A at time

t > 0, given by ω0
(
τλ
t (A)

) =: ωt(A), define the evolved state ωt . In view of the τ 0
t -invariance

of ω0,

ωt(A) = ω0
(
τλ
t (A)

) = ω0
(
τ 0
−t ◦ τλ

t (A)
)
, (2.4)

therefore, its large-t asymptotics is controlled by the scattering for the pair
(
τλ
t , τ 0

t

)
of

evolutions. As for the generators W(f ) of W(D) equation (2.4) reads τ 0
−t τ

λ
t (W(f )) =

W(e−ih0t eihλtf ), the limit is in fact controlled by the scattering of the two one-particle unitary
evolutions (eihλt , eih0t ).

In this section, we perform the spectral analysis of the Hamiltonians h0 and hλ and
calculate the relevant Möller operators.

The unperturbed Hamiltonian h0 is readily analysed by Fourier transform, which is the
unitary u : H → Ĥ := L2([0, 2π)3, C

2):

(uf )(k) = (2π)−3/2
∑
x∈Z

3

eikxfx, f ∈ H (2.5)

(u∗f̂ )x = (2π)−3/2
∫

[0,2π)3
e−ikx f̂ (k) dk, f̂ ∈ Ĥ, (2.6)
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showing its unitary equivalence with the multiplication by ω(k) = ∑3
α=1 2 sin2(kα/2):

(uh0u
∗f̂ )(k) = ω(k)f̂ (k). (2.7)

Hence, the spectrum of h0 equals the range of ω, i.e., the real interval [0, 6], and the generalized
eigenfunctions corresponding to z = e ∈ [0, 6] are given by

ψ0
p,1 = u∗

(
δp

0

)
, ψ0

p,2 = u∗
(

0
δp

)
,

where δp(k) = δ(k − p) is the Dirac function and p runs over {p ∈ [0, 2π)3 : ω(p) = e}.
The resolvent of hλ, Rλ(z) = (hλ − z)−1 is calculated by solving the equation

(h0 − z)f + λπ∗
0 σ1π0f = g. (2.8)

This implies an equation for f0 = π0f ∈ C
2:

(I + λπ0(h0 − z)−1π∗
0 σ1)f0 = π0(h0 − z)−1g. (2.9)

Define G(z) = {gx(z); x ∈ Z
3}, where

gx(z) = (2π)−3
∫

[0,2π)3

e−ikx d3k

ω(k) − z
(2.10)

is the matrix element
[(− 1

2� − z
)−1]

x,0. Then,

π0(h0 − z)−1π∗
0 = g0(z) × I (2.11)

and we have

det(I + λπ0(h0 − z)−1π∗
0 σ1) = 1 − λ2g0(z)

2. (2.12)

Remark 2.1. The function g0(z) is analytic in C\[0, 6] and has continuous boundary values
at the cut (see, e.g., [6]). We denote

γ (k) := λg0(ω(k) + i0). (2.13)

In the model on Z
d , γ (0) is real and finite for d � 3, in particular, in our d = 3 case,

0 < γ (0) < ∞. Also, Im γ (k) �= 0 for ω(k) ∈ (0, 6). Finally, as ω(k) − 6 = −ω(k′), where
k′
α = π − kα , we have that gx(6 − z) = −eiπ

∑
α xαgx(z).

As a consequence, if γ (0) > 1, the determinant has exactly two simple zeros at two real
points e0 < 0 and 6 − e0. Thereby, if φ̃0 ∈ C

2 is in the kernel of the matrix I + λg0(e0)σ1,
then φ(e0) = −λ(h0 − e0)

−1π∗
0 σ1φ̃0 satisfies π0φ = φ̃0, hence

(h0 − e0)φ + λπ∗
0 σ1π0φ = 0.

Hence, e0, 6 − e0 are simple eigenvalues of hλ and

φ(e0) = NG(e0)

(−λg0(e0)

1

)
, φ(6−e0) = NG(6 − e0)

(−λg0(6 − e0)

1

)
are the associated normalized eigenvectors. On the other hand, if γ (0) � 1, the determinant
does not vanish for z ∈ C\[0, 6], implying that there is no spectrum outside [0, 6].

If I + λg0(z)σ1 is invertible, z belongs to the resolvent set of hλ and, replacing π0f in
equation (2.8) with the solution f0 of equation (2.9), one obtains the explicit form of the
resolvent:

Rλ(z) := (hλ − z)−1

= R0(z) − R0(z)λπ∗
0 σ1(I + λg0(z)σ1)

−1π0R0(z). (2.14)
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The strong limits

strong − lim
t→−∞ eithλ e−ith0 = �− (2.15)

exist and define an isometry �− : H → Hac (Möller operator), whereHac ⊂ H is the subspace
of absolute continuity of hλ [7]. Known formulae of scattering theory [7] allow us to obtain
the generalized eigenfunctions of hλ from those of h0 as

ψp,i = �−ψ0
p,i = − lim

ε↘0
iεRλ(ω(p) + iε)ψ0

p,i . (2.16)

As −iεR0(ω(p) + iε)ψ0
p,i = ψ0

p,i , we obtain

ψλ
p,1 = ψ0

p,1 − λG(ω(p) + i0)

1 − γ (p)2

(−γ (p)

1

)
ψλ

p,2 = σ1ψ
λ
p,1.

(2.17)

In Fourier transform

ψ̂λ
p,1 =

(
δp

0

)
− λ

1 − γ (p)2
· (2π)−3

ω(k) − ω(p) − i0

(−γ (p)

1

)
. (2.18)

As a consequence of the above calculations, we have that the wave operator �− has the
form u�−u∗ = I + K , where I is the unit operator and K has the generalized kernel:

K(k, k′) = λ

1 − γ (k′)2
· (2π)−3

ω(k) − ω(k′) − i0

(
γ (k′) −1
−1 γ (k′)

)
. (2.19)

Under our assumptions, the wave operator for the pair (hλ, h0) likewise exists and

strong − lim
t→∞ e−ith0PHac

eithλ = �∗
−, (2.20)

where PHac
is the orthogonal projection onto Hac.

Proposition 2.1. Let γ (0) � 1. Then, ∀f ∈ D, the following limit exists and defines an
automorphism of W(D):

lim
t→∞ τ 0

−t ◦ τλ
t W(f ) = W(�∗

−f ). (2.21)

Proof. As, for γ (0) � 1, hλ has no eigenvalues, Hac = H and the assertion follows from
equation (2.20) taking into account the definition (2.3). �

3. The constrained equilibrium state and its time evolution

To any state ω on W(D) is associated its (nonlinear) generating functional E : D → C:

ω(W(f )) = E(f ), (3.1)

which satisfies (i) normalization E(0) = 1, (ii) unitarity E(f ) = E(−f ) and (iii) positivity:
n∑

i,j=1

ziE(fi − fj ) e− i
2 Im(fi ,fj )z̄j � 0, ∀n,∀zi ∈ C, fi ∈ D (i = 1, . . . , n).

Conversely, any E with these properties defines a unique state by equation (3.1). Therefore,
in describing the initial and evolved states of our model, it will be sufficient to specify the
corresponding generating functionals.

The initial state will be taken as a product of canonical equilibrium states of the two
reservoirs at temperatures βi and densities ρi, i = 1, 2:

E0(f ) = E
(1)
β1,ρ1

(f1)E
(2)
β2,ρ2

(f2). (3.2)
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We need, therefore, a short description of the canonical states of a lattice Bose reservoir.
We adapt the derivation by Cannon [8] for the continuum Bose gas. Let β, ρ be fixed positive
numbers and define

ρcr(β) = (2π)−3
∫

[0,2π)3

1

eβω(k) − 1
d3k.

For ρ < ρcr(β), the fugacity z is defined to be the unique solution of the equation

ρ = (2π)−3
∫

[0,2π)3

z

eβω(k) − z
d3k,

while, for ρ � ρcr(β), put z = 1. The momentum distribution for k �= 0 at the given β, ρ is
proportional to

n(k) = z

eβω(k) − z
,

while the condensate density is given by

ρ0 = max{0, ρ − ρcr(β)}.
Then, the generating functional of the canonical equilibrium state at β, ρ is given by the
formula

Eβ,ρ(f ) = exp

{
−‖f ‖2

4
− 1

2
(f̂ , nf̂ )

}
J0

(√
2(2π)3ρ0|f̂ (0)|), (3.3)

where J0 is the Bessel function.
For ρ � ρcr(β), the canonical state defined by equation (3.3) is extremal; however, if

ρ > ρcr(β), it has a non-trivial decomposition into extremal states indexed by a phase eiθ :

Eβ,ρ(f ) = (2π)−1
∫ 2π

0
Eθ

β,ρ(f ) dθ, (3.4)

where

Eθ
β,ρ(f ) = exp

{
−‖f ‖2

4
− 1

2
(f̂ , nf̂ )

}
exp{−i(2π)−3/2

√
2ρ0 Re(e−iθf (0))}. (3.5)

Thereby, f ∈ l2(Z3) is such that the functionals (3.5) are well defined, e.g., f ∈ l1(Z3) will
suffice.

After this preparation, we come back to our model of two reservoirs. In view of the
above discussion, a natural choice of the test function subspace is D = l1(Z3, C

2). Then,
equation (3.2) with E

(i)
βi ,ρi

(fi) arbitrary mixtures (with probability measures dµi(θi)) of
extremal states (3.5) at βi, ρi, i = 1, 2, defines a state over W(D). Denoting

ñ0 =
(

n1 0
0 n2

)
, ρ̃0(θ1, θ2) = (

√
2ρ01 e−iθ1

√
2ρ02 e−iθ2), (3.6)

we have

E0(f ) =
∫

dµ1(θ1) dµ2(θ2)E
θ1,θ2
0 (f ), (3.7)

where

E
θ1,θ2
0 (f ) = exp

{
−‖f ‖2

4
− (f̂ , ñ0f̂ )

2
− i

(2π)3/2
Re(ρ̃0(θ1, θ2) · f̂ (0))

}
. (3.8)

In particular, the canonical states (3.3) are obtained for dµi(θ) = (2π)−1 dθ .
We are interested in the time evolution of an initial state ω0 as defined by equation (3.7)

under the coupled dynamics. The evolution (2.4) is quasi-free. As a consequence of
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proposition 2.1, we obtain the following convergence result, which defines the stationary
state:

Proposition 3.1. Let γ (0) � 1. Then, ∀f ∈ D, the following limit exists:

lim
t→∞ ωt(W(f )) = ω0(W(�∗

−f )) := Estat(f )

and defines a quasi-free invariant state ωstat(f ). Corresponding to the decomposition (3.7) of
the initial state,

Estat(f ) =
∫

dµ1(θ1) dµ2(θ2)E
θ1,θ2
stat (f ), (3.9)

where E
θ1,θ2
stat (f ) = E

θ1,θ2
0 (�∗

−f ).

In view of the explicit forms of the functionals E
θ1,θ2
0 (·), equation (3.8), and of the

expression of �∗
− in terms of the (adjoint of the) kernel K, equation (2.19), proposition 3.1

provides a detailed description of the stationary state and allows the calculation of various
quantities of physical interest. A few examples are given in the next section.

4. The particle and energy currents in ωstat

We calculate here the particle and energy currents in the stationary states with the generating
functionals E

θ1,θ2
stat entering the extremal decomposition (3.9). In doing this, we take advantage

that the initial state, being a product of extremal equilibrium states, can be approximated by
finite-volume states (possibly with weak symmetry-breaking perturbations), what allows us to
substantiate the formal calculation below.

Let φ1,�
s be the gauge automorphism on the sites in � of the first reservoir:

φ1,�
s (W(f ))i,x =

{
W(eisf1,x), if i = 1, x ∈ �

W(fi,x), otherwise.

If � is finite, φ1,�
s is the inner automorphism implemented by the unitary group eisN1,�

. If H�
λ

is the second quantized Hamiltonian (1.1) (with summations restricted to �), plus the small
symmetry breaking term, the operator corresponding to the current of particles flowing from
the first to the second reservoir at time t is given by the time derivative of the operator N1,�,
which is (up to terms of the order of the small symmetry breaking term)

I
1,�
part (t) = eitH�

λ i
[
H�

λ ,N1,�
]

e−itH�
λ = −iλ eitH�

λ (a∗
0b0 − b∗

0a0) e−itH�
λ . (4.1)

Calculating the expectation in the finite-volume states approximating the initial state,
letting �↗Z

3, followed by the suppression of the symmetry breaking field and, finally,
t → ∞ , one obtains the following expression for the particle current in the stationary state:

J 1
part = −iλωstat

(
a∗(δ1

0

)
a
(
δ2

0

) − a∗(δ2
0

)
a
(
δ1

0

)) = 2λ Im
(
ωstat

(
a∗(δ1

0

)
a
(
δ2

0

)))
, (4.2)

where a�(f ) denote the creation/annihilation operators in the Gelfand–Naimark–Segal
representation [1] of the quasi-free state ωstat; here,

(
δi

0

)
(x)j = δi,j δx,0.

Similar considerations for H
1,�
0 = 1

2

∑
x,y∈� tx,ya

∗
xay instead of N1,� provide the

expression for the energy current

J 1
en = −i

λ

2
ωstat

(
a∗(h1

0

)
a
(
δ2

0

) − a∗(δ2
0

)
a
(
h1

0

)) = λ Im
(
ωstat

(
a∗(h1

0

)
a
(
δ2

0

)))
, (4.3)

where

h1
0(x)j = −δj,1(δ|x|,1 − 6δx,0).
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As announced, we first consider the expression of the currents in the stationary state
ω

θ1,θ2
stat corresponding to extremal initial states, i.e., defined by the generating functional

E
θ1,θ2
stat (f ) = E

θ1,θ2
0 (�∗

−f ), where E
θ1,θ2
0 is given by equation (3.8). The following formulae

are obtained using the well-known expressions for the two-point functions in a quasi-free
state [9]:

Lemma 4.1. In a quasi-free state ω over D with generating functional

ω(W(f )) = e− 1
4 (f,Xf )ei

√
2Re(ξ,f ),

where X � 1 is a self-adjoint operator in H with form domain Q(X) ⊃ D, and ξ ∈ D′),

ω(a(f )) = (ξ, f )ω(a∗(g)a(f )) = (f,Xg) + ω(a∗(g))ω(a(f )).

Plugging this into equation (4.2), one gets the following expression of the particle current
in the stationary state:

J 1
part(θ1, θ2) = 2λ Im ω

θ1,θ2
0

(
a∗

0

(
�∗

−
(
δ1

0

))
a0

(
�∗

−
(
δ2

0

)))
= 2λ

(2π)3

∫
(n2(k) − n1(k))

Im γ (k)

|1 − γ (k)2|2 d3k

+
2λ

(2π)3

√
ρ01ρ02

1 − γ (0)2
sin(θ2 − θ1). (4.4)

Likewise, one gets for the stationary energy current

J 1
en(θ1, θ2) = 2λ Im ω

θ1,θ2
0

(
a∗

0

(
�∗

−
(
h1

0

))
a0

(
�∗

−
(
δ2

0

)))
= 2λ2

(2π)3

∫
(n2(k) − n1(k))

Im γ (k)

|1 − γ (k)2|2 d3k. (4.5)

5. Conclusion

We have shown that, for the solvable toy model defined by equation (1.1), an initial state,
which is the product of extremal equilibrium states of the two reservoirs, reaches a stationary
state with flow of particles and energy through the junction. Equations (4.4), (4.5) cover the
whole range of temperatures, densities and phases of the initial equilibrium states of the two
Bose gases. Several remarks are in order.

If both reservoirs are condensed, i.e., ρ01 and ρ02 are both different from zero, the particle
current shows a peculiar dependence on the phase difference. This is not true for the energy
current, where the second term coming from the expectations of the creation/annihilation
operators does not contribute. Also, if ρ01ρ02 �= 0 and β1 = β2, then n1(k) = n2(k), in which
case the integral terms in equations (4.4), (4.5), representing the contribution to the currents
of the excited states, vanish; therefore, particles are exchanged only between the k = 0 states
and there is no energy flow (as expected, as the k = 0 states carry no energy).

In order to obtain the currents in the canonical state, we have still to integrate
expressions (4.4), (4.5) over the phases θi of the two condensates. This has the effect
that the particle currents between the k = 0 states are averaged out and only the first term
in equation (4.4) survives. In particular, there is no current if the temperatures are equal and
either ρ1 = ρ2 � ρcr(β) or both densities are overcritical (irrespective of their values).

In conclusion, the presence of the condensates in the reservoirs has little influence on
the currents, as long as one considers non-symmetry-breaking states. We conjecture that this
holds true for more general junctions and we propose to check this fact for a model like (1.1)
with polynomial interaction terms of second degree in a

�

0, b
�

0.
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